Furthermore, the fact that

$$
\xi^{k}\left(1+\xi^{k}+\xi^{2 k}+\cdots+\xi^{(n-2) k}+\xi^{(n-1) k}\right)=\xi^{k}+\xi^{2 k}+\cdots+\xi^{(n-1) k}+1
$$

implies $\left(1+\xi^{k}+\xi^{2 k}+\cdots+\xi^{(n-1) k}\right)\left(1-\xi^{k}\right)=0$ and, consequently,

$$
\begin{equation*}
1+\xi^{k}+\xi^{2 k}+\cdots+\xi^{(n-1) k}=0 \quad \text { whenever } \quad \xi^{k} \neq 1 \tag{5.8.2}
\end{equation*}
$$

Fourier Matrix

The $n \times n$ matrix whose (j, k)-entry is $\xi^{j k}=\omega^{-j k}$ for $0 \leq j, k \leq n-1$ is called the Fourier matrix of order n, and it has the form

$$
\mathbf{F}_{n}=\left(\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{n-2} & \cdots & \xi
\end{array}\right)_{n \times n}
$$

Note. Throughout this section entries are indexed from 0 to $n-1$. For example, the upper left-hand entry of \mathbf{F}_{n} is considered to be in the $(0,0)$ position (rather than the $(1,1)$ position), and the lower righthand entry is in the $(n-1, n-1)$ position. When the context makes it clear, the subscript n on \mathbf{F}_{n} is omitted.

The Fourier matrix ${ }^{50}$ is a special case of the Vandermonde matrix introduced in Example 4.3.4. Using (5.8.1) and (5.8.2), we see that the inner product of any two columns in \mathbf{F}_{n}, say, the $r^{t h}$ and $s^{t h}$, is

$$
\mathbf{F}_{* r}^{*} \mathbf{F}_{* s}=\sum_{j=0}^{n-1} \overline{\xi^{j r}} \xi^{j s}=\sum_{j=0}^{n-1} \xi^{-j r} \xi^{j s}=\sum_{j=0}^{n-1} \xi^{j(s-r)}=0 .
$$

In other words, the columns in \mathbf{F}_{n} are mutually orthogonal. Furthermore, each column in \mathbf{F}_{n} has norm \sqrt{n} because

$$
\left\|\mathbf{F}_{* k}\right\|_{2}^{2}=\sum_{j=0}^{n-1}\left|\xi^{j k}\right|^{2}=\sum_{j=0}^{n-1} 1=n
$$

50 Some authors define the Fourier matrix using powers of ω rather than powers of ξ, and some include a scalar multiple $1 / n$ or $1 / \sqrt{n}$. These differences are superficial, and they do not affect the basic properties. Our definition is the discrete counterpart of the integral operator $F(f)=\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-\mathrm{i} 2 \pi f t} d t$ that is usually taken as the definition of the continuous Fourier transform.

